Approximate Gauss-Newton Methods for Nonlinear Least Squares Problems
نویسندگان
چکیده
The Gauss–Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an “inner” direct or iterative process. In comparison with Newton’s method and its variants, the algorithm is attractive because it does not require the evaluation of second-order derivatives in the Hessian of the objective function. In practice the exact Gauss–Newton method is too expensive to apply operationally in meteorological forecasting, and various approximations are made in order to reduce computational costs and to solve the problems in real time. Here we investigate the effects on the convergence of the Gauss–Newton method of two types of approximation used commonly in data assimilation. First, we examine “truncated” Gauss–Newton methods where the inner linear least squares problem is not solved exactly, and second, we examine “perturbed” Gauss–Newton methods where the true linearized inner problem is approximated by a simplified, or perturbed, linear least squares problem. We give conditions ensuring that the truncated and perturbed Gauss–Newton methods converge and also derive rates of convergence for the iterations. The results are illustrated by a simple numerical example. A practical application to the problem of data assimilation in a typical meteorological system is presented.
منابع مشابه
The University of Reading Approximate Gauss-Newton methods for nonlinear least squares problems
The Gauss-Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well-suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an...
متن کاملGlobal Convergence of a New Hybrid Gauss--Newton Structured BFGS Method for Nonlinear Least Squares Problems
In this paper, we propose a hybrid Gauss-Newton structured BFGS method with a new update formula and a new switch criterion for the iterative matrix to solve nonlinear least squares problems. We approximate the second term in the Hessian by a positive definite BFGS matrix. Under suitable conditions, global convergence of the proposed method with a backtracking line search is established. Moreov...
متن کاملA Gauss-Newton Approach for Nonlinear Optimal Control Problem with Model-Reality Differences
Output measurement for nonlinear optimal control problems is an interesting issue. Because the structure of the real plant is complex, the output channel could give a significant response corresponding to the real plant. In this paper, a least squares scheme, which is based on the Gauss-Newton algorithm, is proposed. The aim is to approximate the output that is measured from the real plant. In ...
متن کاملFast spectral methods for the shape identification problem of a perfectly conducting obstacle
We are concerned with fast methods for the numerical implementation of the direct and inverse scattering problems for a perfectly conducting obstacle. The scattering problem is usually reduced to a single uniquely solvable modified combined-field integral equation (MCFIE). For the numerical solution of the M-CFIE we propose a new high-order spectral algorithm by transporting this equation on th...
متن کاملTensor Methods for Large, Sparse Nonlinear Least Squares Problems
This paper introduces tensor methods for solving large, sparse nonlinear least squares problems where the Jacobian either is analytically available or is computed by nite diier-ence approximations. Tensor methods have been shown to have very good computational performance for small to medium-sized, dense nonlinear least squares problems. In this paper we consider the application of tensor metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 18 شماره
صفحات -
تاریخ انتشار 2007